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1.0 INTRODUCTION

The objective of this project was to develop a Genetic Evolution Target Prototyping

(GETP) methodology for rapid target model development and validation from limited

initial sensory and technical data. The Phase I developed methodology generates new

target signatures of a given target from an initial signature database by utilizing the power

of genetic inheritance. Developed methodology allows for an expansion of the initial

signature database and extensive testing of ATR systems over a variety of realistic

signatures and situations not seen so far. The methodology utilizes a power of genetic

inheritance to generate new signatures of a given target from a limited set of initial

signatures. Initial signatures are represented by blob models. They are transformed into a

string representation, a representation suitable for the genetic processing. The population

of strings obtained from a starting set of signatures is subject to genetic evolution.

Crossover and mutation operations are applied during each evolutionary cycle to generate

new signatures. New signatures in the population are validated according to closeness to

a tuning set of signatures. After a number of evolution cycles, signatures in the current

population inherit significant resemblance from the initial and tuning subset of signatures

and closely resemble signatures to be interpolated.

This Phase I effort helped to formulate a modified approach which will be

presented in the Phase II proposal. During Phase I some concepts developed for target

modeling and evolution were tested. It helped to identify missing but required elements of

the final approach and provided us with the ability of defining technological limitations

and areas of scientific research needed by the Phase II effort, Additionally, contact with

potential customer provided valuable help in formulating the requirements for Phase II.

This technology will be extremely applicable to all areas where generation of new

realistic entities resembling already existing entities is needed. These areas can range from

Datamat Systems Research, Inc. 3
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the problem of generating new targets to the generation of new scenarios for simulated

worlds.

2.0 MOTIVATIONS

Current technology for constructing and validating ground order of battle target models

for use in high-frequency, high-resolution, synthetic aperture radar (SAR) template-based

and model-based automatic target recognition (ATR) systems is a time consuming, labor

intensive process. New, innovative and cost-effective methods for building and validating

such models are needed. These methods must radically decrease the amount of time

required to create target models and they should incorporate a limited amount of initial

realistic data available over the development and validation phases.

3.0 PROJECT OBJECTIVES

There are two major objectives associated with the project as graphically depicted

in Figure 1.

.~ ~ ~~~~~~. .ooo , , ,, o o, ....

S.. . ......... .. .

' New Unseen Targets Unseen Targets
(Plausible) (Existing) ..

extrapolation interpolation

Figure 1. Project Objectives
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The first objective is to develop an interpolation technique that generates large

number of target signatures in a very close neighborhood of already existing signatures.

The new signatures inherit properties and variations from already existing close neighbor

signatures.

The second objective is to develop an extrapolation technique that generates new

target signatures from a very limited initial database. The generated target signatures are

expected to extrapolate the initial database towards a given direction. This extrapolation

is executed over unseen poses which are collected to complete the database.

It was decided during the in-progress project review meeting at DARPA on

September 25, 1996, that an interpolation technique will be tested and a solution to the

extrapolation will be elaborated. At the time of final reporting, however, we were able to

achieve more than originally promised. We carried out experiments with two interpolation

techniques and an experiment with one extrapolation approach. These testing experiments

helped us to validate elements of developed approaches, elaborate final conclusions, and

formulate a final approach to be presented in the Phase II proposal. Other objectives of

this effort included:

i. Develop a methodology for rapid target generation from limited initial sensory

and technical data,

ii. Investigate the application of the methodology to enhance ATR systems,

iii. Demonstrate feasibility of the methodology through experimental validation,

iv. Investigate commercial potentials, and

v. Transition the Phase 1 effort to Phase 2 by working closely with end-users

(e.g. Wright Labs, AAC-1)

The concept of interpolating target signatures over a very close neighborhood is

shown in Figure 2. Interpolation assumes the availability of several target signatures

obtained under a very small change in pose, for example, obtained for every one degree

Datamat Systems Research, Inc. 5
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resolution. A small subset of these signatures is used to generate a large number of new

signatures representing possible variations at these poses. New signatures inherit

properties from all provided local signatures and are characterized by a high similarity to

these existing signatures. Local constraints are preserved. Properties from neighbors are

inherited. In addition, perturbations to inherited properties are introduced.

Signatures

M

Figure 2. Interpolation of Target Signatures

The concept of extrapolating target signatures from a given single signature

towards another (however distant) signature is shown in Figure 3. Extrapolation assumes

availability of a very few signatures as an input to the extrapolation process. This process

generates new plausible signatures by extending properties of a given single signature

toward another distant signature. Resulting new signatures must represent unseen

signatures at poses in between.

•<__(Signatures

Figure 3. Extrapolation of Target Signatures

Datamat Systems Research, Inc. 6
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Both interpolation and extrapolation concepts can be extended over inheriting

articulation properties and inheriting or introducing obscuration properties. This is

illustrated in Figure 4. For a given limited number of poses of a target, we assume that

available signatures demonstrate articulation changes applied to the target. These input

signatures along with the geometrical / functional model of a target are then used to

generate a large number of new signatures which extensively share articulation features.

.. / • Articulations
siTarguetr• Target•

Figure 4. Obscuration of Target Signatures

4.0 APPROACH AND ARCHITECTURE

We have developed a three-step approach for the generation of new target signatures from

the existing subset of signatures and from the user defined objectives (interpolation,

extrapolation, or articulation). The approach exploits the following three-step procedure

arranged into a system as illustrated in Figure 5;

Step 1: Signature Transformation into Blob Representation

Step 2: Blob Based Evolution

Step 3: Signature Synthesis from Blob Representation

In this approach, input real signatures are analyzed and transformed into a higher-level

signature model. Model data are then manipulated according to the objectives of

interpolation, extrapolation or articulation processes. This manipulation results in a model

of a new signature which is next synthesized from fed back model data.

Datamat Systems Research, Inc. 7
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Signature analysis module and signature synthesis module are connected through a

database of selected signature sections. These signature sections are generated by the

analysis module and used by the synthesis module to reconstruct a new signature. In this

way, fragments of raw image data are shared between transformation and synthesis steps,

and the structure and parameters of a new signature are generated by the evolution

module.

S .'... ..... .. ....... ......

Blob-Based Evolved Blob-Based
Target Models Target Models

.......... ... . .. .

Input Signatures New Signatures

Figure 5. Developed Architecture

4. 1 Signature Analysis

The first step, signature analysis and transformation, aims at the modeling raw signature

image data onto a higher abstraction level which could be more suitable for manipulation.

At this point, we believe that interpolation or extrapolation processes applied to a higher-

level signature representation have a greater chance and flexibility to succeed rather than

applied on the row image level.

Signature analysis is focused on the extraction of scattered blobs, distinction of the

target area from the background area, formation of a blob graph as the higher-level

Datamat Systems Research, Inc. 8
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signature representation, and formation of blob image sections for cataloging. A blob is

defined further as a local energy cluster formed by very few adjacent pixels. Blob center

represents local maximum of energy within a given radius.

Processes of signature analysis are shown in Figure 6. Input target signature is

processed by the DOG operator (fast approximation of the Laplace operator) to compute

energy distribution. Region-of-interest is determined by thresholding the DOG output at

zero level. Blob detection is run to determine the center of a blob as a local maximum of

the DOG output. Blobs are then extracted from the areas of positive ROI. At the same

time, input signature is processed by a RANK filter (similar to the MIT Lincoln Lab filter)

which segments the image chip into the target area and the background area. Blobs of

target area and blobs of background area are then separated from each other.

Signature Evolution

Blob Target Blob Data
Confidence Background Blob Data • - DB

Target Signature

Figure 6. Signature Analysis Process

Intermediate results from the signature analysis are presented in Figure 7. These results

were obtained for the relatively large radius of the DOG operator, R=2.4 pixels, which is

Datamat Systems Research, Inc. 9
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appropriate for the target recognition tasks. The large radius captures main energy

clusters while the small radius tends to model fine elements of the signature. We later

concluded (after final experiments) that for target modeling this radius should be

decreased substantially in order to capture fine structures of a signature and improve the

quality of the synthesized signature.

The input signature is a HH polarization signature of a T72 tank in 10 degree

azimuth. This signature is represented by a 64x32 chip. Results of DOG, RANK and ROI

processing are shown for this signature. Resulting blob positions are indicated by "white

dots" on the output image. Target blob data is forwarded to the Signature Evolution

module (see Figure 6). For each blob position, a corresponding blob window is extracted

from the input signature and are provided to the Blob Formation and Data Base module.

DOG Blob Graph
Target Blob Data

<Id, Graph Nodes>

Rank,

Signature Background

Target Blob Icons

Background Blob Icons Blob Formation

& &Blob DB

Figure 7. Signature Analysis Image Transformation

Next, a relative confidence of a blob is computed. A single value confidence was

used to balance the strength and the spread of a blob. It was achieved by a low pass

filtering process. Figure 8 shows the input signature and its cross-section, filter cross-

Datamat Systems Research, Inc. 10
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section, and a resulting confidence image, and its cross-section. Confidence values were

scaled to the interval from 0 to 100. A blob with confidence of 100 was allocated as the

blob with the maximum function value on a given filtered signature image. Any other blob

of the signature had allocated confidence as a percentage of the interval from 0 to this

maximum extracted. Blob confidence values were then provided to the Signature

Evolution module.

Signature Confidence Map

Blob Confidence I
Combining < Conf >

spread & strength ........

neighborhood ..

S........ 

.. ..: " - " "..... .

Blob
.J'.i i::Positions

Figure 8. Confidence Computation

4.2 Blob Formation

Blob images extracted by the Signature Analysis module are processed to form a catalog

of blobs. The blob formation process aims at the isolation of a single blob (central to the

image section) from any other closely positioned blob. In addition, each blob image is

normalized to a common reference level. These blob formation processes and resulting

blob images are shown in Figure 9.

It is important to notice that example blob sections on the left hand side have other

very closely positioned adjacent blobs. The blob formation process was able to reduce

Datamat Systems Research, Inc. 11
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these adjacent blobs as is shown when comparing corresponding left hand side and right

hand side blob images. Also, each blob image was normalized to the same average energy

unit.

Blob
4 Positions Counter-Blob

Map

BlobConfidences

Blob Formation q

Modeling . ...ter

spike & neighbors Signature L Filter

.Ext ion Formation

Example Blob Sections BD Blob Icons

Figure 9. Blob Formation

4.3 Signature Synthesis

This section presents signature synthesis and a demonstration of integrated analysis-

synthesis process. An experimental evaluation of the analysis-synthesis part of the system

was needed before connecting the Signature Evolution module.

4.3.1 Signature Synthesis Processes

Processes of signature synthesis are presented in Figure 10. Signature synthesis aims at

the generation of a new target signature from a given blob model of a target and an image

catalog of blobs. Input to the synthesis is determined as a vector of blob identifiers,

Datamat Systems Research, Inc. 12
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positions, and confidence values. There are two phases in signature synthesis; 1) target

area synthesis, and 2) background area synthesis.

Target Blob Data

Function ~ ... •!. ..... t,' .'.

' Id~s) .. :::..:::.... .... . ...Base 11. ii. .0
Function

Backgound Position
sData ... ...... Generator

BBase. ....... FuFui n ctoBackground IconsG

Data Generator
-W"ý I Bs

New Signature

Figure 10. Signature Synthesis

First, a 2-D confidence map is synthesized from provided blob positions and blob

confidence values. This map is then segmented onto an image of blob identifiers (see

Figure 11). Blob identifiers activate the Data Base to retrieve corresponding blob image

sections. Amplitude of each blob image is adjusted by the confidence value, then blob

image sections are inserted into a synthetic image.

Second, for remaining unfilled spaces of a new signature, background blob data

(identifiers, positions, and confidence values) are generated randomly. Then the same

procedure is used to synthesize background blobs. If there are still pixels of undefined

value, their value is determined randomly with a given distribution (in our case Gaussian

distribution was selected). Finally, a synthetic image is formed as an 64x32 chip.

Datamat Systems Research, Inc. 13
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Target
Blob Data -1) Confidence Blob Regions

Map Map

Base Function

Blob :St::j Synthesis
Icons R Background

Ln j "-'• •Background

Signature

Background l i f
Blob 1 SJs RandN
Icons

Target Signature
D Signature

Figure 11. Image Formation During Synthesis Process

4.3.2 Signature Analysis-Synthesis Demonstration

Since signature analysis decomposes a signature and represents it as a model on a higher

abstraction level and then signature synthesis transforms the model data back into a new

signature, we had to test the composition of both transformations. The experiment was

designed to validate both analysis and synthesis schemes and their integration.

Architecture for this experiment is shown in Figure 12, The input signature was

transformed into the blob model data and forwarded to the signature synthesis without any

manipulation of the model. At the same time, blob images extracted by the blob formation

module were stored in the Data Base as a catalog of blob images. Model data and the

database were used to support signature synthesis to generate a synthetic signature.

Both the input signature and the synthetic signature are shown in Figure 13.

Unfortunately, due to the use of a histogram equalization technique there is a slight change

in the gray scale of both signatures. We investigated the similarity of signatures by

Datamat Systems Research, Inc. 14
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comparing signature cross-sections. The comparison showed the same cross-section

patterns over the target area. The signatures differ, however, over the background area.

This is because background is synthesized using randomly generated background data

rather than data provided from the input signature. In addition, we observed that in the

future the analysis process should apply a DOG operator of a smaller radius value.

Blob-Based Target Models

xN .' ii: t::::Zt::Z' ..........

0=0tur ate~t

Target
Signature
Azimuth = 10

Figure 12. Analysis-Synthesis Demonstration

4.4 Stochastic Evolution

We have developed a stochastic evolution method for signature interpolation. This

method aims at the population of a given target signature at a given pose or several

signatures over a very small pose interval. This process can generate a huge number of

signatures at different levels of confidence. This type of data can then be used by the ATR

community to evaluate the sensitivity of the ATR algorithms. Also, this method can be

refined and applied during the Phase II research for properties inheritance/sharing between

two adjacent signatures.

Datamat Systems Research, Inc. 15



Phase I Final Report

Application of stochastic evolution is shown in Figure 13. This type of evolution

can be applicable for: 1) sharing blobs and/or blob properties between two or more

adjacent signatures, 2) modifying blob positions in x-y coordinates, and 3) modifying blob

confidences. Stochastic evolution is guided by the underlying distribution, which has been

set to the Gaussian distribution for our experiments.

1) Stochastic Evolution of Blob ID
Blob-Based Target Models E * Azimuthl. 2<z: Azimuthli.,

Azimuth,
Azimuth 1+1

Azimuth1 +2

2) Stochastic Evolution of Blob x-y Position

.x 3) Stochastic Evolution of Blob Confidence

Figure 13. Stochastic Evolution

Experimental results for stochastic distribution were carried out for a single

signature and are shown in Figure 14. The degree of blob position and blob confidence

adjustment was increased gradually and evaluated on the synthesized images. This type of

evolution seems particularly useful for sharing properties between signatures and for

introduction of disturbances simulating obscurations and different type of camouflage.

Also, since some researchers envisioned SAR phenomenology as somehow related to

stochastic processes, it makes sense to consider some elements of this evolution type to be

integrated with, for example, traditional linear or polynomial interpolations.

Datamat Systems Research, Inc. 16
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................. ~....

Blob-Based Evolved Blob-Based
Target Models Target Models

Target
Signature
Azimuth = 10

Par-n < Par-2 < Par-3

Figure 14. Results of Stochastic Evolution

4.4 Genetic Evolution

In the initial experiments the capabilities of the interpolation process was evaluated. Here,

for a given a set of target signatures at a particular change of azimuth it is required to

generate new target signatures for different changes in azimuth. For these experiments

three sets of data were extracted: training, tuning, and testing. The selected genetic

algorithm uses the training data as the initial input to the system. It then uses the tuning

data to direct the search towards promising blob graphs. After new blob graphs are

generated, the best graph variation is selected as the final result. The testing data is used to

evaluate the fitness of the newly generated blob graph. To achieve our goal a suitable

representation as well as an adequate evaluation function are required. In these

experiments a graph of blobs is represented using a spiral coding. The coding approach

and the evaluation function are presented in Sections 4.4.2 and 4.4.3. The next section

describes basic ideas behind Genetic Algorithms (GAs) and explains how application of

GAs to target signature interpolation are different from traditional GAs.

Datamat Systems Research, Inc. 17
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4.4.1 Genetic Algorithms

GA's are iterative procedures which maintain a "population" of candidate solutions to the

objective function f(x):

P(t) = <xl(t), x2(t), ... , xN(t)>

Each structure xi in population P is simply a binary string of length L. Generally,

each xi represents a vector of parameters to the function f(x), but the semantics

associated with the vector is unknown to the GA. During each iteration step, called a
"generation", the current population is evaluated, and, on the basis of that evaluation, a

new population of candidate solutions is formed.

The initial population P(O) is usually chosen at random. Alternately, the initial

population may contain heuristically chosen initial points. In either case, the initial

population should contain a wide variety of structures. Each structure in P(O) is then

evaluated. For example, if we are trying to minimize a function f, evaluation might

consist of computing and storing f(xl), ... , f(xN). The main idea of a Genetic Algorithm is

depicted in Figure 15 (a flowchart) and a programming structure below:

t <-0;

initialize P(t); -- P(t) is the population at time t

evaluate P(t);

while (termination condition not satisfied) do

begin

t <- t+1;

select P(t) from P(t-1);

recombine P(t);

evaluate P(t);

end

The structures of the population P(t+l) are chosen from the population P(t) by a

randomized "selection procedure" that ensures that the expected number of times a

structure is chosen is proportional to that structure's performance, relative to the rest of

the population. That is, if xj has twice the average performance of all the structures in

P(t), then xj is expected to appear twice in population P(t+l). At the end of the

Datamat Systems Research, Inc. 18
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selection procedure, population P(t+l) contains exact duplicates of the selected

structures in populationP(t).

( START

ENCODE
PROBLEM

SPACE

> = THRESHOLD

PERFORMANCE
TERMNATEAND STOPPING

CRITERION
< THRESHOLD

SELECT BEST
PERFORMERS TO
REPRODUCE AND

BREED

APPLY
CROSSOVER AND

MUTATION TO
CREATE NEW
GENERATION

Figure 15. Genetic Algorithms

In order to search other points in the search space, some variation is introduced

into the new population by means of idealized "genetic recombination operators." The

most important recombination operator is called "crossover". Under the crossover

operator, two structures in the new population exchange portions of their binary

representation. This can be implemented by choosing a point at random, called the

crossover point, and exchanging the segments to the right of this point. For example, let

xl = 100:01010, and

x2 = 010:10100.

and suppose that the crossover point has been chosen as indicated. The resulting

structures would be:

yl = 100:10100 and

Datamat Systems Research, Inc. 19
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y2 = 010:01010.

Crossover serves two complementary search functions. First, it provides new

points for further testing within the schemata already present in the population. In the

above example, both xl and yl are representatives of the schema 100#####, where

the # means "don't care". Thus, by evaluating yl, the GA gathers further information

about this schema. Second, crossover introduces representatives of new schemata into

the population. In the above example, y2 is a representative of the schema #1001###,

which is not represented by either "parent". If this schema represents a high-performance

area of the search space, the evaluation of y2 will lead to further exploration in this

part of the search space.

Termination may be triggered by finding an acceptable approximate solution to

f(x), by fixing the total number of evaluations, or some other application dependent

criterion.

The basic concepts of GA's were developed by Holland 1975 [Holland, 1975] and

his students [Bethke, 1981; DeJong, 1975; Frantz, 1972; Hollstien, 1971]. Theoretical

considerations concerning the allocation of trials to schemata [DeJong, 1975; Holland,

1975] show that genetic techniques provide a near-optimal heuristic for information

gathering in complex search spaces. A number of experimental studies [references] have

shown that GA's exhibit impressive efficiency in practice. While classical gradient search

techniques are more efficient for problems which satisfy tight constraints (e.g.,

continuity, low-dimensionality, unimodality, etc.), GA's consistently outperform both

gradient techniques and various forms of random search on more difficult (and more

common) problems, such as optimizations involving discontinuous, noisy, high-

dimensional, and multimodal objective functions. GA's have been applied to various

domains, including numerical function optimization [Bethke, 1981; Brindle, 1981],

adaptive control system design [DeJong, 1980], and artificial intelligence task domains

[Smith, 1983].

Datamat Systems Research, Inc. 20
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In this project GAs search approach is applied in a different way than in traditional

GAs applications. Specifically, GAs search mechanism is not used to find the best

individual by converging the fitness evaluation function. In addition, the initial population

is not started randomly. In this project GAs search is used to shift initial population

towards tuning set of individuals. For experiments with target signatures the initial

population represents a set of targets with some aspect range. The tuning set represents

another set of targets with different aspect range. The aspect distance between the closest

targets in both sets defines range for the missing aspects. By genetically shifting the initial

population from one set to another the bet performing target in the current population is

traversing missing target aspects space. This different employment of GAs is illustrated in

Figure 16.

"Best Converged" Individual

Initial Random TRADITIONAL GA
z• Population of Individuals

S"Best Searched" Individual

Areas Used to
Direct Evolution
(Represented

Inital opultio ofby Tuning Signatures)
Initial Population ofGAU E INP O CT (ersnd

Existing Signatures

Figure 16. Genetic Algorithms Approach Used for Interpolation

The top level view of the genetic is depicted in Figure 17. The next sections describe the

genetic encoding schema and the evaluation function.

Datamat Systems Research, Inc. 21



Phase I Final Report

4.4... Genti.Ecoin
..*K*.**. ....* ..~.. ... .. *. ..........

. . .. .*.....*..

Figure 17. Genetic Evolution of Blob Representations

4.4.2 Genetic Encoding Technique

The target signature encoding/decoding used to represent targets consists of an ordered

list of fields together with the look-up tables which indicate how bit strings are to be

decoded to produce information about a given target. Figure 18 illustrates the encoding

schema. Blobs are mapped to the string representation (i.e. a natural representation for

GAs) through the spiral unwinding mechanism. The mechanism allows capturing the

spatial distribution of blobs in the string representation. The one hand side of the string

represents blobs closer to the center of the target, whereas other side represents blobs at

the target peripherals. The spiral encoding is less disruptive for the crossover operation

(Figure 19). Each blob encoding consists of fields that describe its x/y position, aspect of

the signature that a given blob is part of, confidence, and presence or absence of blob. The

presence/absence one bit field is used in order to maintain the constant string length for all

target signatures being manipulated by GAs.
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AZ: azimuth of the blob graph (7 bits)
X: x coordinate of the blob (6 bits)
Y: y coordinate of the blob (5 bits)
CONF: confidence level of the blob (7 bits)
P: presence/absence of the blob (1 bit)

000000101000101O1000010011100011000011010011100000 ..... 101111000011
String Representations (780 bits)

Figure 18. Encoding Schema
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Figure 19. Crossover Operation

4.4.3 Evaluation Function

An evaluation function is used to determine fitness of each target signature in the

population. Each individual in the current population is match to all tuning signatures.

The best match is the value of the evaluation function. The match of the evaluated

signature to the tuning signatures is expressed by three components illustrated in Figure

20. The following components are used:

i. Difference

ii. Misalignment

iii. Adjacency

iv. Consonance

These components are expressed as the integer values and the sum of these values is used

as the match of the individual signature to the tuning signature. To compute fitness

measure of the individual the match of this individual to all tuning signatures is computed.

The smallest value, or the closest match, is used as the fitness measure.
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BLOB COMPONENTS Blob#( fl) Blob#( # )
Number of Blobs Mismatch

Difference

Blob Position Mismatch
Misalignment

Multiple Blob Detection Neighborhood-Scan

Adjacency

Confidence Level Match
Consonance I NeighborhoodMeasure( ,

Figure 20. Fitness Measure Components

5.0 EXPERIMENTS

Two experimental studies have been performed. The objective of the first one was to

interpolate missing aspects (represented by the green color lines in Figure 21a) among

given interlacing aspects.

Interlacing Aspects Separated Aspects

a) b)
Figure 21. Experimental Setup For Target Aspect Data
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The objective of the second experimental study was to interpolate missing aspects

(represented by the green color lines in Figure 21 b) between two separated aspect ranges

(i.e. training aspects represented by blue color and tuning aspects represented by red

color). Figure 22 illustrates the results of one experiment obtained during the first

experimental study where couple of best matches have been evolved. The target signature

with azimuth 27 degree was the best match when compared with testing aspect target

signatures. The match value was computed using the evaluation function described in

Section 4.3.2.

Training new blobs new new

Azimuth = 1,4,7,... ,28

Tuning
Azimuth = 2,5,8,... ,29

Best match
Azimuth =27

Testing
Azimuth = 3,6,9,..., 30

Figure 22. Result of Interlacing Aspects Experiment

Figure 23 illustrates results of one experiment obtained during the second experimental

study. Similarly, as in the first experimental study, the match value was computed using

the evaluation function described in Section 4.3.2. The target signature with azimuth 25

degrees was the best match when compared with testing aspect target signatures. When

the newly generated target signature was compared with all training and tuning target

signatures, it was verified that the best match is still the azimuth 25 degree target

signature.
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/ Azimuth = 1 Azimuth = 20 7Azimuth = 35 Azimuth = 54

"Gap of 15 degree

Training Signatures I Tuning Signatures

New graph

Closest match
New signature New signature azimuth 25

Figure 23. Results of Separated Aspects Experiment

6.0 CONCLUSIONS AND PHASE 2 OBJECTIVES

The following two main conclusions have been reached after the completion of Phase I:

i. Experimental results of the applicability of the Genetic Algorithms based

SAR target signatures generation have been demonstrated to positively show

feasibility of the approach on difficult problems involving interpolation of

target aspects,

ii. For the future work it is necessary to develop a hybrid extrapolation

technique which would work for wider interval of azimuth value.

At the end of Phase II a full scale simulation software package for the MSTAR

ATR community will be developed. The software will be an integral part of the KHOROS

environment and will use software procedures developed by the other groups working
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under the MSTAR Program. The following are requirements for the Phase II research and

software system:

i. Generate synthetic signatures with an estimated one degree resolution in

azimuth from the user provided real data of six degree resolution in azimuth

for several target classes,

ii. Develop quality evaluation methodology and software in order to validate

synthetic signatures,

iii. Develop a theoretical approach to validate applied interpolation techniques and

to estimate the error introduced by interpolation techniques,

iv. Apply principles of electromagnetic phenomenology to model scatters over the

interpolation space,

v. Investigate and integrate different approaches to signature synthesis such as

linear and polynomial interpolations, use of a geometric model for

interpolation, stochastic property sharing, and genetic operators for property

and data inheritance,

vi. Estimate and validate the pose for each generated synthetic signature,

vii. Estimate a base-line quality reference which can serve for the interpretation

and validation of the results,

viii.Investigate the extension of the initial six degree resolution for the initial data

base toward lower resolutions,
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ix. Investigate how far the interpolation potential can be extended (i.e.

interpolation break-point determination),

x. Investigate the applicability of the developed approach for target signature

extrapolation,

xi. Compare results against current interpolation approaches, and

xii. Determine the ability of the algorithm to handle resolution cell migration.

Experimenting with different types of signature evolution, we recognize that an

extrapolation of a signature towards another signature and over a larger interval of

azimuth must be associated with geometric modeling of a target. We propose an

approach which will exploit geometric elements of a target by aligning blobs extracted

from the signature to geometric elements of the target. This concept is briefly illustrated

in Figure 24 where blob data grouped into target geometric/functional elements is then a

subject of evolution. It means that the evolution is localized rather than global as in the

Phase I experiments. This will further improve the quality of synthetic signature.

A proposed hybrid approach to the interpolation and extrapolation will be

presented in the Phase II proposal. It will involve an integration of blob extraction, blob

modeling, interpolation of blob electromagnetic characteristics, interpolation of blob

positioning, interpolation techniques, geometric and functional modeling.
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Figure 24. Hybrid Approach
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